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Abstract. For a localized quantum spin system, such as the Heisenberg model, one believes 
that the collective excitations will b e  gapless if the ground state is antiferromagnetic, by 
the spin-wave theory. In this paper, we use some rigorous results of Lieb and show that 
the above conclusion still holds for the Hubbard model at half-filling, which is an itinerant 
electron system. 

9.e Uabbard --ode! [!I was. if i trodxed a !acg ti-e aga as a -de !  :G the 
strongly correlated fermion systems. It has been used to interpret the metal-insulator 
transition [Z, 31 and itinerant electron ferromagnetism [4]. It may also provide some 
new mechanism for the newly discovered high-temperature superconductivity [ 5 ] .  
Naturally, such an important model attracts many physicists’ interest. Attempts have 
been made to solve this model analytically or numerically but, so far, only a few 
rigorous results have been proved. Among them, the most important ones are probably 
the exact solution in one dimension [6] and Nagaoka’s theorem [4]. 

In a recent paper [7], Lieb proved rigorously that, for any U > 0, the ground state 
of the Hubbard model at half-filling is non-degenerate and the total spin of the ground 
state is 0 in a finite simple-cubic lattice. Although the antiferromagnetic long-range 
order was not established in this paper, these results make further investigations 
possible. In this paper, based on Lieb’s results, we shall show that a well established 
fact for the localized quantum spin models, such as the Heisenberg model, still holds 
for the Hubbard model, an itinerant electron system. More precisely, we shall rigorously 
prove that a closed collective excitation gap i s  a necessary condition for the antifer- 
romagnetic long-range order in the ground state of the Hubhard Hamiltonian at 
half-filling. 

The Hubbard Hamiltonian is 

H = t X  1 (cLcjr+c$ci,).t UXnitni l  (1) “ ( U )  

where 1 and U are parameters representing the hopping energy and the on-site 
interaction of electrons, respectively. ( i j )  denotes a pair of nearest-neighbour sites, For 
definiteness, we define the Hamiltonian on  a finite simple-cubic lattice A. With respect 
to the Hamiltonian, A is bipartite. In this case, the sign of I can be either positive or 
negative because a suitable canonical transformation always changes it [4]. In the 
following, U is assumed positive, representing a Coulomb repulsion. Let N,, be the 
number of the lattice sites and Ne be the total number of electrons. When N e =  N,,, 
the lattice is half-filled. Although Lieb’s results tell us that the collective excitation 
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gap is open for any finite A at half-filling, one argues that it will be eventually closed 
in the thermodynamic limit. The argument is based on a common belief that the ground 
state of the Hubbard model at half-filling is antiferromagnetic. Therefore, by the 
spin-wave theory, there will be spin wave excitations whose energies are arbitrarily 
close to the energy of the ground state. Noticing the spin-wave theory is established 
for the localized quantum spin models, such as the Heisenberg model, we feel that it 
will be proper to confirm the above argument by a direct and rigorous exploration on 

model. In this paper, we prove the following theorem, by using uniqueness of the 
ground state of the Hubbard model a t  half-filling. 

the prqxfiies efthe gm.nd nfthe r-rubblrd mnde!, ..hid! is I!? itiner.!?! e!ectra!? 

Theorem. If the ground state of the Hubbard model at half-filling has the antiferromag- 
netic long-range order, then the collective excitation gap will be closed in the thermody- 
namic limit. 

Our main tool for the proof of the theorem is the following lemma. 

Lemma 1 .  Let IYo) be the non-degenerate ground state of a given Hamiltonian H. Let 
B be an operator such that (TolBIYo) = 0, then 

where Eo is the energy of the ground state and E, is the energy of the first excited state. 

Prooj Expanding the commutator and using the definition of E,, we find 

(YdB',  [ H ,  Blllqd -(*dB+HB+BHB+l~J - 
(T,IB+B+ BB+IYo) (YOlBtB+ BB+I*,J - E , .  (3 )  

Since (YoIBIYo)=(YnIB+I*~)=O, the new states ~* , )=B~Y, , )  and l'P2)=B+lY0) are 
orthogonal to I*,,). By the variational principle, the expectation values of H in these 

are iarger than 3,.  T;,erefore, 

(YoIB+HBI*o)~ EI(*oIB+BI*o) (\Y,IBHB+I'Y,)~ E ~ ( Y ~ I B B + I V J .  (4) 

Substituting them into the right-hand side of (3), we prove the lemma. U 

To detect the antiferromagnetic long-range order in the ground state of a localized 

We first introduce the spin-wave operators 
quantum spin model, one of the standard methods is as follows. 

where q = (al I qz..  . . I a d )  is a quasi-momentum vector satisfying 0 S qi < 2rr and S,, 
is the spin z-component at site k If the ground state has the antiferromagnetic 
long-range order, we expect that the following condition should be satisfied: 

g , = ( ~ r , l ~ - Q ~ Q l * o ) ~ c ~ A  ( 6 )  
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where Q = (T, T, . . . , T) and c is a positive constant independent of N,. In other 
words, there should be the spin-wave condensation at Q. For details, see [8]. On the 
other hand, it is well known [7] that, for spin-i fermions, the following operators 

s ='( s, =t(c;c,+cic+) s, =- (.;CL- cfc,) 2 2 n t - n i )  (7) 
1 
2i 

satisfy the spin commutation relations 

r q  L y e ,  -pJ  ~ i = ; ~  ~ .=epy7. (8) 
Therefore, we can easily transplant the above method to the Hubbard model by 
substituting (7) into the definition of S,. 

Some properties of S, are useful in proving our theorem. 
First, it is easy to show that 

and [S,, s-,] =o. (9) + s, = s-, 
Next, we can prove the following 

Lemma 2. Let '4, be the non-degenerate ground state of the Hubbard Hamiltonian at 
half-filling. Then 

wOlsql~o) = 0 (10) 

for any q. 

Proof: We first notice that the total spin x-component 

commutes with the Hamiltonian, i.e., 

[S,, H ] = O .  (12) 

exp(iOS,)H exp(-iOS,) = H. (13) 

This implies that any subspace corresponding to an eigenvalue A of H is invariant 
under the unitary transformation U = exp(i8Sx). In particular, the subspace spanned 
by the ground state of H, which is one-dimensional by Lieb [7], is so. Therefore, we 
must have 

U(8)IVd = exp( i8SX)I~J=  exp(ia(8))lvo) (14) 

where a ( 8 )  is a real number dependent of 8. We now choose 8 =  T. A little algebra 
shows that 

u(T)s,,u+(T)= - s k z  (15) 

Therefore, for any real number 8, we have 

for any k in A. Therefore, U(?r)S,U+(?r) = - S ,  and 

W O 1  U(T)SqU+(T)lYd = -wOlsql~o). (16) 

WOl W~)&.u+(v)lv~) = Wuolexp(i4T))Sq w(-ia(T))lvo) 
on the other hand, by (14)> we have 

= wol~,?lvJ. (17) 
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Combining (16) and (17), we obtain 

( ~ o l S , l ~ d = O  (18) 
for any q. 0 

We are now ready to prove the theorem. 

Proofofthe theorem. We assume that the collective excitation gap keeps open in the 
thermodynamic limit. 

Let S, be the operator B in lemma 1 .  Noticing S i  = S-, and S_,S, = S&, inequality 
(2) now reads 

(19) 
A direct calculation of the commutator gives 

(WOI[S-~, [ H, SqlIIYo) 3 2(Et - ~o)(YoIS-JqIYo). 

where T is the hopping term of the Hubbard Hamiltonian. Its expectation value in 
the ground state satisfies 

(21) 
where a is a positive constant independent of N , .  While the upper bound in (21) is 
trivial, one can get the lower bound by using Gershgorin’s theorem (see [9] and [IO] 
for its proof and applications to Nagaoka’s theorem). 

- aN,, s (vel TIYO) G 0 

Substituting (20) and (21) into (19) and letting q = Q, we finally obtain 

Z d - ’ ( a / d ) * ( E ,  -E~)(Y~~S-QSQIYJ. ( 2 2 )  
Since the collective excitation gap keeps open in the thermodynamic limit, there must 
be a positive constant e such that E, - Eo 3 e and hence 

Zd- ’ (a /d )  a e(Y&_,SQ/Yo). (23) 
Therefore, g ,  can be, at most, O(1) as N,, approaches infinity. And inequality (6) is 
not satisfied. I t  implies that the antiferromagnetic order cannot exist in Yo. 

Our proof is accomplished. 0 
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